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ABSTRACT 

 
Identification of off-targets can play important role in network based therapeutics and side effect predictions of a 

given drug. In this paper, we present a program which can compute ligand similarity based  upon  binary finger printing 
using tanimoto  coefficient. We have extracted 6512 drugs of drug bank and computed tanimoto coefficient of 6512 x 6512 
drugs to find similar drugs among these sets. Out of this dataset, we selected 23 drugs indicated/involved in clinical 
condition known as hypertension. Thereafter, we selected 46 protein targets involved in hypertension using literature 
survey. Subsequently, we docked 23 drugs against the 46 protein targets to build binding profiles based upon docking 
energies using docking pipeline (developed in-house). Based upon our experiments, we propose that similar ligands (i.e. 
drugs having higher tanimoto coefficient) tend to share similar binding profile against the set of protein targets. 
Keywords: Tanimoto coefficient, Perl, Hypertension, Protein targets, Drugs, Binding affinity. 
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INTRODUCTION 
 

Drug discovery is an expensive and time consuming process [1]. Many a times a promising drug gets 
rejected by FDA or other regulatory agencies during clinical trials after many years of investments and hard 
work.  Therefore, it is imperative for pharmaceutical industry to select those molecules for clinical research 
which has high efficacy and minimal side effects. To improve on these possibilities, computational techniques 
such as virtual screening (VS) play an important role during drug discovery and development process [2].   
 

Drug databases such as Drug Bank and PubChem provides datasets for VS. Virtual screening process 
can be divided into two broad categories: ligand based and structure based VS (Figure 1) [3].  The ligand based 
method uses methods such as similarity searching [4], pharmacophore mapping [5] and machine learning 
methods [6].  Structure based systems involves docking where a drug candidate binds to target protein and 
score is computed to identify ligands with relatively better binding affinity [7].  
 

 
 

Figure 1 shows Virtual Screening Process 

 
Similarity search approach broadly employs substructure searching. Pharmachophore based 

approaches takes into account steric and electronic features to ensure the optimal supramolecular 
interactions with a specific biological target structure and to trigger (or to block) its biological response [5].  On 
the other hand, machine learning approaches are based on learning to capture structure and functional 
properties from experimentally verified compounds. This information  is used to predict the properties of new 
compound and the techniques is popularly known as Quantitative –structure activity relationship (QSAR) and 
Structure–activity relationship (SAR) [6] . In contrast with structure based methods, ligand based screening 
methods do not take target protein structure into account. These methods work on an assumption that ligands 
sharing same topological properties will have same biological activity.   
 

Though number of methods has been developed in ligand based VS domain [2-7] still there is a plenty 
of scope to introduce new methods which can help during drug discovery process. In the present work, we 
built a system which automates Open Babel to generate drug similarity coefficient (Tanimoto coefficient: Tc) 
matrix for various drug profiles.  This program played a crucial role in our network based therapeutics and side 
effects prediction system [8]. 
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MATERIALS AND METHODS 
 
Database 
 

DrugBank (http://www.drugbank.ca) and PubChem (http://pubchem.ncbi.nlm.nih.gov/) are well 
known repository for drug related information [9]. DrugBank contains 8261 drug entries which includes 2021 
FDA approved drug, 233 FDA approved protein/peptide drug, 94 nutraceuticals, 6000 experimental drugs and 
about 4338 non redundant proteins [10]. In this study, we have used ligand information from Drug Bank.  
 
Software 
 
          Open Babel is an open collaborative project for analyzing chemical data. It provides several inbuilt 
features to search, convert, analyze, or store data from molecular modeling, chemistry, solid-state materials, 
biochemistry, or related areas.  These includes file format support, fingerprints and fast searching, bond and 
atom characterization, canonical representation of molecules, coordinate generation in 2D and 3D space, 
stereochemistry, force fields [11]. We wrote Perl scripts to automate windows based Open Babel - 2.3.1 (32 
bit) code. This script was used to calculate ligand similarity between two molecules. The Open Babel 
executable program was downloaded from the following link http://openbabel.org/wiki/Get_Open_Babel. 
   
Ligand similarity analysis 
 

Here, we introduce a ligand similarity method to produce binary finger printing based upon molecular 
properties or features. We label a feature as ‘0’ if feature/property is absent from the molecular profile and ‘1’ 
if the feature is present.  Tanimoto coefficient is a well studied measure to find similarity between two 
molecules using their fingerprints. For instance, if we need to find similarity between two drug molecules (i.e. 
X and Y) then their tanimoto coefficient (Tc) can be defined as 

 
Tc = NXY / (NX + NY – NXY) 

 
Where NX is number of features present in molecule X, NY represent features present in Y, NXY account 

for common features present in X and Y (Figure 2). Further, we use set theory and label different numbers of 
properties for molecule X and Y as set A and set B respectively. Now, let us assume that set A contains five 
features labeled as {A, B, C, D, E} and set B contains 6 features  {I, H, G, F, E, D}.  
 
Set A = {A, B, C, D, E}      Eq (1) 
Set B = {I, H, G, F, E, D}                                        Eq (2) 
NA   = 5  
NB  = 6 
NAB = 2 
Tc =  2/(5+6-2) = 2/9 = 0.22 

 

  
 

Figure 2: Venn diagram set A (for molecule in X) and set B (for Y) 
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Programming Language  
 
Perl is a de facto scripting language for bioinformatics community due to ease of coding and flexibility 

to build variety of computational pipelines and automation [12-13]. In present work, we have used Perl for 
mining relevant information from DrugBank structure-data file (sdf) to parse relevant information such as 
DrugBank ID, Generic_Name, etc to create an input file for subsequent processing (Figure 3). The obtained 
information was used by Open Babel software to compute ligand similatity (namely tanimoto coefficient) and 
to construct similarity matrices using Perl scripts.  
 

RESULTS 
 

DrugBank contains information on sequence, structure and pathway of target molecule along with 
chemical, pharmacological and pharmaceutical data of experimental and withdrawn drugs. The structural 
information is provided in Structure Data Format (SDF) file.  We have retrieved SDF files for different drugs and 
used Perl scripts to extract information such as DrugBank ID, generic name, chemical formula and  drug SMILES 
string (Simplified Molecular-Input Line-Entry System) (See Figure 3 and 4). We have also coded for clustering 
algorithm to cluster data on drugs and their properties. As an application, we extracted drugs involved in 
hypertension (https://tinyurl.com/yaqnj7dt: Supplementary 1, 2, 3 & 4). A total of 23 drug molecules were 
identified: twelve (12) out of these decreases blood pressure (labeled as: decreases hypertension), whereas 
ten are found to increase blood pressure (causes hypertension). One drug out of this group known as anti-
obesity drug (orlistat) was used as additional example due to our earlier studies on obesity network [8]. 

 

 
 

Figure 3 shows Preprocessing of sdf file to smi file an Open Babel input 
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Figure 4 Process flow diagram of LSSAT 

 
Each ligand in each set was compared to each ligand in every other set. Overall, 23 versus 23 set 

comparisons were made and a matrix of 23x23 ligands is generated (https://tinyurl.com/yaqnj7dt: 
Supplementary 5). Tanimoto coefficients (Tc) of chemical similarity were calculated for each pair of ligands. 
This ligand similarity matrix is subjected to hierarchical clustering and heat map plot is generated (Figure 5). 
Principle component analysis algorithm was used for clustering data based on Tc values as shown in Figure 6. 
Tc (Tanimoto coefficient) >=40% are listed in Table 1.  
 

 
 

Figure 5 Flow chart of ligand based similarity analysis 
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Figure 6 (a) Clustering (b) Heat map plot of the 23 drugs based on their similarity scores 
 

Table 1: Drug-Drug Similarity score and docking energy when compared with subset of proteome (23 drug targets). 

 

Drug 1 Drug  2 Tc Percentage Similarity (%) 
Correlation 

coefficient ( R ) 

Lisinopril Enalapril 0.83505 83% 0.97006 

Lisinopril Moexipril 0.505376 50% 0.60243 

Lisinopril Benazepril 0.52381 52% 0.65877 

Enalapril Moexipril 0.55 55% 0.69308 

Enalapril Benazepril 0.61111 61% 0.7495 

Benazepril Moexipril 0.462687 46% 0.53508 
     

Orlistat Lisinopril 0.401869 40% 0.27562 

Orlistat Enalapril 0.4905 49% 0.32077 

 
            We extracted around 44 target proteins involved in hypertension. Thereafter, 23 ligands were docked 
against these targets (https://tinyurl.com/yaqnj7dt: Supplementary 6 & 7). A correlation/regression analysis 
was performed between binding energies and those drugs having more than Tc value >=40% (0.4).  Drugs with 
high similarity (Tc) shows good correlation with their binding energies (Table 1 and Figure 7; 
https://tinyurl.com/yaqnj7dt: Supplementary 8 and 9). We found significant correlation between binding 
energies and Tc values when compared with control (P<0.05). These data suggest that structurally similar 
drugs show similar binding affinities towards their targets. (Table 2 and Figure 8). 
 



     ISSN: 0975-8585 

September – October 2017  RJPBCS  8(5)          Page No. 111 

 
 

Figure 7 Correlation coefficient of binding energies of drugs w.r.t. Tc values 
 

 
 

Figure 8 Correlation graph Lisinopril v/s Enalapril 

 
CONCLUSION 

 
In summary, we have shown that protein targets may be quantitatively related by their ligands. The 

ligand similarity plays a vital role in drug designing and drug re-positioning efforts. This tool can help 
pharmaceutical companies and researchers to screen large database such as DrugBank and PubChem to 
identify those ligand molecules that shares similar structure and property. This tool is able to calculate ligand 
similarity based upon their Tc value of drugs as well as perform large scale docking analysis to correlate two 
measures. We have shown utility of this tool in clinical conditions hypertension and obesity [8]. We also 
believe that this tool will play important role in network based therapeutics and side effect predictions. 
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Table 2: Binding energies of two highly similar drugs: Lisinopril and Enalapril with 83% similarity TC (0.8350) 
 

 
 
 
 

Protein 

Lisinopril 
(Binding 
energies 

Kcal/Mol) 
Enalapril (Binding 

energies Kcal/Mol) 

 
 
 

Protein 

Lisinopril 
(Binding energies 

Kcal/Mol) 

Enalapril (Binding 
energies 

Kcal/Mol) 

1B68 -3.4 -4.4 3EQM -6.5 -7.4 

1BDA -5.7 -6.7 3G2F -4.9 -5.6 

1BIL -6.7 -6.6 3H7W -1.6 -1.7 

1C9H -5.8 -6.7 3HNG -6.7 -8.3 

1D2Q -3.2 -3.7 3J0A -4.7 -4.4 

1DB1 -7.6 -7.7 3ODU -7.2 -7.4 

1GCZ -6.2 -7.4 3UX0 -6.3 -6.7 

1HKN -4.2 -4.5 4AL1 -4 -4.6 

1I7I -7.3 -7.3 4JYO -3.1 -3.2 

1IAP -3.8 -4.4 

1M9J -8.1 -8.3 

1MJV -4.4 -4.6 

1MMP -6.1 -6.8 

1N3U -4.2 -4.6 

1O86 -7.8 -8.1 

1R4L -7.9 -7.5 

1SG1 -4.9 -5.5 

1UVZ -4.6 -5.2 

1YK0 -5.4 -6.4 

1YXJ -3.3 -4.3 

1Z3S -3.5 -3.5 

2A4Z -6.7 -7.2 

2AF0 -4.3 -4.7 

2BXS -7.6 -8.3 

2D86 -4.2 -5.3 

2GBT -4.7 -4.9 

2ILT -7.1 -7.3 

2NMP -0.4 0 

2QFA -5.5 -6.4 

2YGG -3.7 -4.2 

2Z8C -4.3 -5 

ZNN -6.6 -7.4 

3A7E -5.2 -5.7 

3B4V -3.3 -4 

3E7G -6.1 -6 
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